
VITALSE: Visualizing Eye Tracking and Biometric Data

Devjeet Roy
devjeet.roy@wsu.edu

Washington State University
Pullman, Washington

Sarah Fakhoury
sarah.fakhoury@wsu.edu

Washington State University
Pullman, Washington

Venera Arnaoudova
venera.arnaoudova@wsu.edu
Washington State University

Pullman, Washington

ABSTRACT

Recent research in empirical software engineering is applying tech-

niques from neurocognitive science and breaking new grounds in

the ways that researchers can model and analyze the cognitive

processes of developers as they interact with software artifacts.

However, given the novelty of this line of research, only one tool

exists to help researchers represent and analyze this kind of multi-

modal biometric data. While this tool does help with visualizing

temporal eyetracking and physiological data, it does not allow for

the mapping of physiological data to source code elements, instead

projecting information over images of code. One drawback of this

is that researchers are still unable to meaningfully combine and

map physiological and eye tracking data to source code artifacts.

The use of images also bars the support of long or multiple code

files, which prevents researchers from analyzing data from experi-

ments conducted in realistic settings. To address these drawbacks,

we propose VITALSE, a tool for the interactive visualization of com-

bined multi-modal biometric data for software engineering tasks.

VITALSE provides interactive and customizable temporal heatmaps

created with synchronized eyetracking and biometric data. The

tool supports analysis on multiple files, user defined annotations

for points of interest over source code elements, and high level

customizable metric summaries for the provided dataset. VITALSE,

a video demonstration, and sample data to demonstrate its capabil-

ities can be found at http://www.vitalse.app.

ACM Reference Format:

Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova. 2020. VITALSE:

Visualizing Eye Tracking and Biometric Data. In 42nd International Con-

ference on Software Engineering Companion (ICSE ’20 Companion), May

23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3377812.3382154

1 INTRODUCTION

Over the years, software engineering researchers are increasingly

relying on techniques from neurocognitive science, through the use

of psycho-physiological measures, in order to model the cognitive

processes of developers. Eye tracking metrics such as pupil size,

saccades, and fixation duration have been used in combination with

other biometric measures, such as heart rate variability or EEG,

to investigate cognitive processes during software engineering

tasks. For example, Fritz et al. [5] combined EEG, eye tracking, and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea

© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7122-3/20/05.
https://doi.org/10.1145/3377812.3382154

electrodermal activity (EDA) to investigate task difficulty during

code comprehension.

The use of neuroimaging in the domain is still in its infancy. In his

keynote at the International Conference on Program Comprehen-

sion (ICPC’19), Westley Weimer summarizes the less than a dozen

papers so far published using high-resolution medical imaging tech-

nologies and highlights the łgame changingž areas in program com-

prehension that open up opportunities for new research [11]. The

papers published thus far, use either functional Magnetic Resonance

Imaging (fMRI) or functional Near Infrared Spectroscopy (fNIRS)

techniques. In the last couple of years, researchers started combin-

ing eye tracking and brain imaging techniques together [3, 4, 7].

However, in this novel integration of brain imaging techniques in

empirical software engineering studies, researchers rely on tools

developed for neurocognitive science practitioners in other do-

mains. Thus, identifying a clear gap in the tool support available

for interdisciplinary researchers in this expanding field.

For example, the studies using fMRI to evaluate program com-

prehension [9, 10] have had to rely on tools such as BrainVoyager1

and SPM2 which are helpful for the analysis of brain imaging data,

but do not integrate other software engineering artifacts, which

is vital for modeling cognitive process during tasks such as pro-

gram comprehension. Recent studies we have conducted use a brain

imaging technique, fNIRS, simultaneously with eyetracking data

to precisely relate the cognitive load experienced by developers to

specific areas in the source [3, 4]. In order to analyze and visualize

the fNIRS data, we use fNIRSoft [1]. Support for the visualization

of eyetracking data is widespread, with tools such as Ogama3 and

visualisation software offered by Gazepoint4. However, these tools

support only static images or videos and are not able to visualize

temporal gaze data on fine grained software artifacts such as source

code. Without the precise mapping of eye gaze data to source code

elements, researchers have historically relied on manual approxi-

mations for the analysis, which of course is not scaleable. iTrace [8]

was developed to fill this gap, and is able to relate eyetracking data

to specific source code elements. However, at this time, iTrace offers

no temporal visualization support for eyetracking data.

To visualize temporal physiological and eyetracking data, Peitek

et al. recently introduced CodersMuse [7]. To the best of our knowl-

edge, this is the only available tool relevant to this line of research.

The tool supports representation of fMRI, physiological data, and

participant task metrics such as mouse clicks and task correct-

ness. However, the tool does not provide fine grained mapping of

eyetracking data to source code elements, instead rendering eye-

tracking data over images of source code. In addition to files that

1Brain Innovation B.V., Netherlands, brainvoyager.com
2https://www.fil.ion.ucl.ac.uk/spm/
3http://www.ogama.net
4https://www.gazept.com/



ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea Roy, Fakhoury, and Arnaoudova

are too long to be captured in one image, analysis for multiple files

is not supported, which bars researchers from analyzing cognitive

processes of developers in realistic settings.

We propose VITALSE, a tool that allows fine grained temporal

visualization and analysis of combined eye tracking and biometric

data. The main features of VITALSE are summarized as follows:

(1) Interactive and customizable heatmaps with combined eye-

tracking and biometric data, with temporal brushing support,

for time specific analysis.

(2) Multi-file support for heat map visualization on software

artifacts, such as source code files or requirements.

(3) High level task specific biometric, eyetracking, and source

code metric summaries.

(4) Support for creating and visualizing user defined annotations

of points of interest in software artifacts.

(5) Visualization support for datasets containing only eyetrack-

ing data on both source code and textual artifacts, for re-

searchers who do not use brain imaging data.

2 VITALSE

VITALSE is developed as a desktop application and it is Linux, MacOS,

and Windows compatible. VITALSE and sample data to demonstrate

its capabilities can be found at http://www.vitalse.app. To run, sim-

ply download the app and double click.

Figure 1 shows a screenshot of VITALSE. The tool has three main

sections. The source code and heatmap are displayed in the center

component. The radius and intensity of the heatmap in this example

are set by duration, from the eyetracking data, and oxy, from the

fNIRS data, respectively. The resulting heatmap colors indicate how

much cognitive load was experienced over a source code element,

whereas the size of the colored area is determined by the duration of

the fixation. The left column contains participant and task metadata,

such as task completion, duration, and treatment type. Below the

metadata are metrics calculated from specified columns of input

data. In this example, the top identifiers based on gaze fixation

duration are listed. These metrics change temporally depending

on the time window selected in the bottom row of the tool. Time

windows are selected by dragging the mouse over the line-graph.

In this case, the line graph displays the oxy and hbt averages from

the input fNIRS data. The time window selected is near the last

minute of the task.

Figure 2 displays an example of a usage scenario and how the

data flows. In this case, researchers collect data from an fNIRS and

an eye tracker while participants interact with source code files.

Any type of biometric data can be used, and VITALSE supports the

use of eyetracking data only as well, without any corresponding

physiological data. VITALSE then creates a visualization of the pro-

vided synchronized biometric and eyetracking data by layering a

custom heatmap over the source code files uploaded to the tool.

Areas of code are identified using the line and column information

from the eyetracking data and the heat map is then colored using

the supplied physiological data. Intensity of the heatmap colors

indicate the intensity of the physiological data, which is scaled

and mapped to a color. For example, darker colors indicate higher

cognitive load or longer fixation duration.

In the following subsections we explain the tool features, archi-

tecture, types of data sources supported by the tool, and steps for

the data visualization.

2.1 Architecture

VITALSE is written entirely in JavaScript; it is completely platform

independent and can run inmost modern web browsers. The project

utilizes React5, a component based user interface library. This al-

lows VITALSE to be completely modular and enables rapid develop-

ment and integration of new components for evolving visualization

needs. Although VITALSE is developed using web technologies, it

is packaged as a desktop application using Electron [2] for easy

distribution and mitigation of any browser compatibility issues.

Electron is an open source development platform that allows for

the development of desktop applications using web technologies.

The heat map used by VITALSE is custom developed using We-

bGL2 and the incremental Gaussian blur algorithm described by

Nguyen [6]. A GPU based solution is required in order to implement

the temporal brushing feature efficientlyÐthe heatmap clears and

redraws itself numerous times a second while the user is maneu-

vering the selected time window. Performing the rendering of the

heatmap using the CPU incurs a significant cost on the responsive-

ness and usability of the visualization.

2.2 Data Sources

VITALSE supports four types of data files as input:

(1) Software artifacts, such as source code files or requirements

as textual files, used by the participant during the experi-

ment.

(2) Eye tracking data in the form of a flat JSON or CSV. Data

from this file will be used to create the heatmap. The user

can choose which data columns will be used to create the

visualizations.

(3) Synchronized eyetracking and biometric data in the form of

one flat JSON or CSV file.

(4) Physiological data in the form of flat JSON or CSV. This file

will be used to draw visualisation of the physiological data,

customizable on the data columns chosen by the user.

Users are prompted to identify which data columns to use for

the following visualizations: radius, intensity, time, text line and

column for the heatmap, and the y-axis keys for the biometric line

graph.

2.2.1 Software Artifacts. VITALSE supports the use of multiple source

code and textual files. Text files are displayed using the HTML pre

tag, while source files are displayed using an HTML code tag inside

the pre tag. Syntax highlighting for the latter is performed using

highlight.js6, a JavaScript syntax highlighting library which sup-

ports all major programming languages. Gaze data uploaded in the

eyetracking data files is mapped to the line and columns specified

in the uploaded source code or text files with corresponding file

names.

5https://reactjs.org/
6https://highlightjs.org/



VITALSE: Visualizing Eye Tracking and Biometric Data ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea

Figure 1: Screenshot of VITALSE visualizing sample fNIRS and eyetracking data.

Figure 2: Data from the fNIRS and eyetracker are synchro-

nized temporally before being visualized by VITALSE. fNIRS

data is colored to indicate varying levels of cognitive load,

which is then mapped to source code elements and visual-

ized by VITALSE.

2.2.2 Eye Tracking Data. VITALSE supports data from all eye track-

ers, given that it includes the file name for which gaze data was

collected, a timestamp, fixation duration, and the line and column

numbers corresponding to the fixation. Any additional information,

such as pupil size, can be added and visualized by indicating the

corresponding column name in the data file. All eyetracking data

pre-processing, application of fixation filters, and de-noising must

be completed by the user before providing the data to VITALSE for

visualization.

2.2.3 Biometric Data. VITALSE supports any type of biometric data

that can be temporally mapped to eyetracking data. For example,

fNIRS data, which is collected in the form of oxygenated and de-

oxygenated hemoglobin from multiple optnodes, can be mapped to

collected eye tracking data using timestamps. Different biometric

data collection techniques might have inherent differences in the

way that data should be processed or synchronized. For example,

the hemodynamic response measured by fNIRS and fMRI is tem-

porally delayed from the onset of the underlying neural activity.

As a consequence, biometric data from these devices must be pre-

processed before it can be synchronized to align with other forms

of real time data, such as eye tracking. If using biometric data, the

user must pre-process and synchronize their data with eyetracking

data before providing it as input to VITALSE to be visualized. Often

times, during synchronization, biometric datapoints are aggregated

to fit into gaze duration windows. Therefore, in order to create

visualizations for physiological data both the synchronized data,

which contains biometric data mapped to eyetracking gaze points,

and the original pre-processed biometric data must be provided as

input.

2.3 Data Visualization

2.3.1 Eye tracking and Heatmap rendering. VITALSE provides the ability

to visualize eyetracking data snapped to text content. Currently,

there are no standard graphing libraries that support this capability,

which we are aware of. The main challenge in providing a heatmap

visualization directly over text is that font sizes, line heights, tab

sizes, and other typographical properties can vary widely between

computer systems, which could make the visualization inaccurate.

Eyetrackers typically record eye movements and output x and y

screen coordinates. To be able to visualize this data, metadata needs

to be recorded while the eyetracking data is being collected, such

as the screen resolution, position of the editor window, and ty-

pographic settings. Visualization becomes more complex when



ICSE ’20 Companion, May 23–29, 2020, Seoul, Republic of Korea Roy, Fakhoury, and Arnaoudova

eyetracking data is collected for more than one file, for example,

reading through multiple modules in a software project.

To overcome this, VITALSE requires eyetracking data to be recorded

in terms of line and column numbers instead of screen pixel coordi-

nates. This can be done using a tool like iTrace [8]. The use of line

and column information removes variance and allows for consis-

tent visualization of the data. In addition, it enables the mapping of

each gaze in the eyetracking data to identifiers in the source code.

VITALSE uses this information to display metrics, at an identifier

level of granularity, in the left column. In order to display eyetrack-

ing data that uses line and column numbers instead of screen pixel

coordinates, a mapping must be created from the former to the

latter. VITALSE uses Electron’s Browser Selection API 7, which pro-

vides a mechanism to obtain the precise screen coordinate of user

specified characters in any text rendered in the browser window.

Once this mapping is generated, VITALSE draws a heatmap onto an

HTML Canvas element overlaid on top of the source code.

2.3.2 Annotation. VITALSE allows the user to annotate points of in-

terest in the visualised software artifacts, which can later be used

in qualitative or quantitative analyses. For example, we have used

VITALSE to annotate linguistic antipatterns in the source code in

prior studies [4]. We have also used this feature to annotate parts

of the source code that developers reported to be difficult during

bug localization tasks, along with their comments. The annotation

functionality provided by VITALSE allows the user to highlight parts

of the code and then annotate it with multiple tags. These tags can

then be exported to a JSON file, with each entry in the file contain-

ing the start and end character indices of a highlight and a list of

tags the highlight was annotated with. The character indices for

the highlights can be converted to line and column numbers to

incorporate it with the original eyetracking data.

3 EVALUATION

We have conducted a preliminary evaluation of VITALSE while us-

ing it to visualize fNIRS and eyetracking data during two previous

studies [3, 4]. As users of the tool, having the visualization was

fundamental to asking appropriate follow up questions with par-

ticipants. We were able to show participants areas of source code

with high cognitive load, or a high duration of fixations, through

different points in time of the experiment. Participants appreciated

the the visual aid and were able to recall details easier while re-

sponding to our questions. The annotation feature allowed us to

mark identifiers and areas of code where participants made notable

remarks to include in our qualitative analysis later on. We will

continue to use VITALSE for our future studies.

We plan to reach out to researchers in the domain to conduct us-

ability surveys to asses their needs and the usefulness of the current

features, incorporating their feedback into future releases. In par-

ticular, researchers that use any type of biometric and eyetracking

data can use VITALSE, provided that the data can be represented in

the appropriate CSV or JSON formats. As VITALSE supports eyetrack-

ing over any kind of text, not only source code, we plan to contact

researchers that use any text based artifact, such as requirement

documents or code review comments. Most notably, with the recent

7https://developer.mozilla.org/en-US/docs/Web/API/Selection

surge in support for replication and open source practices in soft-

ware engineering research, VITALSE provides the opportunity for

researchers to explore typically hard to obtain biometric data. Thus,

we also plan to contact researchers that do not possess biometric

and eyetracking equipment, but are interested in using our highly

customizable tool with publicly available eye tracking and biomet-

ric data to facilitate the exploration, analysis, and visualization of

experiments.

4 FUTURE DIRECTIONS

Currently, VITALSE visualizes all time based physiological data in

the form of a line graph. In the future we plan to customize this

visualization for the specific type of physiological data. For example,

displaying fNIRS and fMRI data over snapshots of specific brain re-

gions. We also plan to support researchers performing experiments

at design level by supporting different types of software artifacts,

such as UML diagrams. Moreover, automatic analysis of points of

interest based on user defined thresholds will be supported in future

releases. Finally, we plan to investigate whether researchers would

benefit from integrating the synchronization of eyetracking and

physiological data into VITALSE.

5 ACKNOWLEDGMENTS

This work is supported by the NSF (award number CCF-1755995).

REFERENCES
[1] BIOPAC. 2018. fNIRSoft User Manual. https://www.biopac.com/wp-content/

uploads/fnirsoft-user-manual.pdf.
[2] Electron. 2019. Electron. https://electronjs.org/.
[3] Sarah Fakhoury, Yuzhan Ma, Venera Arnaoudova, and Olusola Adesope. 2018.

The effect of poor source code lexicon and readability on developers’ cognitive
load. In Proceedings of the 26th Conference on Program Comprehension. ACM,
286ś296.

[4] Sarah Fakhoury, Devjeet Roy, Yuzhan Ma, Venera Arnaoudova, and Olusola
Adesope. 2019. Measuring the impact of lexical and structural inconsistencies on
developers’ cognitive load during bug localization. EMSE (2019), 1ś39.

[5] Thomas Fritz, Andrew Begel, Sebastian CMüller, Serap Yigit-Elliott, and Manuela
Züger. 2014. Using Psycho-physiological Measures to Assess Task Difficulty in
Software Development. In Proceedings of the International Conference on Software
Engineering (ICSE). 402ś413.

[6] Hubert Nguyen. 2007. Gpu gems 3. Addison-Wesley Professional. https://dl.acm.
org/citation.cfm?id=1407436.

[7] Norman Peitek, Sven Apel, André Brechmann, Chris Parnin, and Janet Siegmund.
2019. CodersMUSE: multi-modal data exploration of program-comprehension
experiments. In Proceedings of the 27th International Conference on Program
Comprehension. IEEE Press, 126ś129.

[8] Timothy R Shaffer, Jenna L Wise, Braden MWalters, Sebastian C Müller, Michael
Falcone, and Bonita Sharif. 2015. iTrace: Enabling eye tracking on software
artifacts within the IDE to support software engineering tasks. In Proceedings of
the Joint Meeting on Foundations of Software Engineering (ESEC/FSE). 954ś957.

[9] Janet Siegmund, Christian Kästner, Sven Apel, Chris Parnin, Anja Bethmann,
Thomas Leich, Gunter Saake, and André Brechmann. 2014. Understanding
understanding source code with functional magnetic resonance imaging. In
Proceedings of the International Conference on Software Engineering (ICSE). 378ś
389.

[10] Janet Siegmund, Norman Peitek, Chris Parnin, Sven Apel, Johannes Hofmeister,
Christian Kästner, Andrew Begel, Anja Bethmann, and André Brechmann. 2017.
Measuring neural efficiency of program comprehension. In ESEC/FSE. 140ś150.

[11] WestleyWeimer. 2019. What goes on in your brain when you read and understand
code?. In International Conference on Program Comprehension (ICPC)—keynote.
https://web.eecs.umich.edu/~weimerw/p/weimer-icpc2019-keynote.pdf.


